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Abstract
We argue that when the number of spins N in the Sherrington–Kirkpatrick
model is finite, the Parisi scheme can be terminated after K replica-symmetry
breaking steps, where K(N) ∝ N1/6. We have checked this idea by Monte
Carlo simulations: we expect the typical number of peaks and features R in
the (non-bond averaged) Parisi overlap function PJ (q) to be of order 2K(N),
and our counting (for samples of size N up to 4096 spins) gives results which
are consistent with our arguments. We can estimate the leading finite-size
correction for any thermodynamic quantity by finding its K-dependence in
the Parisi scheme and then replacing K by K(N). Our predictions of how
the Edwards–Anderson order parameter and the internal energy of the system
approach their thermodynamic limit compare well with the results of our Monte
Carlo simulations. The N-dependence of the sample-to-sample fluctuations of
thermodynamic quantities can also be obtained; the total internal energy should
have sample-to-sample fluctuations of order N1/6, which is again consistent
with the results of our numerical simulations.

PACS numbers: 75.50.Lk, 75.10.Nr, 75.40.Gb

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The Sherrington–Kirkpatrick (SK) [1] model of spin glasses has been the subject of hundreds
of papers. It is the model for which a mean-field theory becomes exact in the thermodynamic
limit (i.e. when N, the number of spins in the model, becomes infinite). Parisi’s replica-
symmetry breaking (RSB) solution [2] is now known to be the correct mean-field solution
[3]. Extensive studies, mostly numerical, have been made of the model at finite N values.
Analytically, the determination of the properties of the model at finite N—the finite-size
corrections—is a much more challenging task in the low-temperature phase than finding the
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mean-field theory. At finite N all the loop corrections to the mean-field solution need to be
considered. Because of the massless modes present in the low-temperature phase [4] each
term in the loop expansion is infinite. Hence, a direct perturbative approach is impossible. A
similar situation applies in finite-dimensional spin glasses, already for the bulk term, when
the dimension d is smaller than 6 [5], so that one could hope at least that experience gained
in studying finite-size effects in the SK model might be relevant to spin glasses in physical
dimensions.

Unfortunately, we have been unable to find any systematic theoretical treatment of the
finite-size problem. However, we have managed to obtain insights into it by examining the
structure of the Parisi overlap probability distribution function PJ (q) (i.e. the non-averaged
overlap probability distribution function) at finite N values. PJ (q) is defined as the probability
that the overlap of the spins in two copies of the system with the same realization of the
quenched disorder Jij is equal to q, i.e.

PJ (q) ≡
〈
δ

(
q − 1

N

∑
i

σiτi

)〉
, (1)

where the Hamiltonian of the two-copy system is

H = −
∑
〈ij〉

Jij (σiσj + τiτj ), (2)

and the sum runs over all the pairs ij of sites in the system. The thermal average 〈· · ·〉 in
equation (1) is taken over the Boltzmann weight associated with all the possible values (±1)

of the Ising spins σi and τi . It has been known for many years that the function PJ (q) is very
different for different realizations of the bonds. In particular it contains a very variable number
R of peaks, humps or shoulders. In this paper, we shall systematically study the distribution
of R and the dependence of its average on the number of spins N. We shall give numerical
and analytic arguments that the mean number of features R increases as Nµ, with µ = 1/6
and that δR, the width of the distribution of R, is N independent for large N. The next step
of our approach is to argue that the Parisi replica-symmetry breaking scheme, which involves
K levels of symmetry breaking (where in order to achieve a stable solution K has to be taken
infinite in the thermodynamic limit), is stabilized at finite N at a value K(N) by self-energy
contributions (whose N-dependence is estimated in appendix A). As a consequence we can
estimate K for a given system size and because R = 2K (see section 8) we can understand the
size dependence of the number of peaks/features in PJ (q).

The next step towards predicting the exponents which give the leading N-dependence of
the corrections to the thermodynamic limit of quantities such as the internal energy per spin e
is simply to use the RSB scheme to compute the dependence of the quantity on K. For example
e = eP + O(K−4), where eP denotes the value of the internal energy in the infinite K limit [6].
Our prescription for evaluating the exponents of the leading finite-size corrections is to set
K = K(N) ∼ N1/6; this implies that the leading finite-size correction to the thermodynamic
limit of the internal energy per spin should be of order N−2/3. Since arguments of this type
do not have the strength of a theorem and can only be suggestive of the possible behaviour,
we have checked our arguments with extensive Monte Carlo simulations. We have computed
many quantities at a number of different values of the temperature. Our results for the internal
energy are reported in section 6. These data support the value of 2/3 predicted by our approach
for the exponent of the leading finite-size correction.

Similarly, the Edwards–Anderson order parameter qEA at finite K differs from its infinite
K form by a term of order K−2. Hence we predict that the finite-size shift of qEA should be of
O(1/N1/3), and we present numerical evidence for this behaviour in section 9.
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Our approach can be used to investigate the sample-to-sample fluctuations of any quantity
by relating them to the sample-to-sample variation in the number of features in PJ (q), δR.
For the internal energy we shall find in section 7 numerical evidence consistent with this
approach, together with a discussion of the behaviour of the sample-to-sample fluctuations
in the critical regime and in the high-temperature phase. Our basic prediction is that the
sample-to-sample fluctuations in the total free energy of a system of N spins are of order Nϒ

where the exponent ϒ = µ = 1/6. There have been numerous attempts to determine this
exponent, both numerically and analytically, and we also review them in section 7.

Because the peaks/features in PJ (q) are caused by the overlap of pure states, in particular
those states whose free energies are of order kBT from that of the lowest free energy state,
one can relate the number of these pure states to the number of peaks R using the relation
R = 2K . This connection is simplified because of the ultrametric organization of states in the
SK model and the details of the argument are given in section 8. In section 9, we discuss the
relation of these ideas with the behaviour of finite-dimensional spin glasses.

2. Theoretical framework

Our Monte Carlo studies of the Parisi overlap probability distribution function PJ (q) for
systems of N spins (with N up to 4096) show that the number R of peaks/features is usually
quite small and that it increases only slowly with N, apparently as R ∼ Nµ, with µ ≈ 1/6.
Our approach to the study of finite-size effects in the SK model is to argue that R, the average
number of such peaks/features for a system of size N, can be connected to a truncation of
Parisi’s RSB scheme at its Kth step, with R = 2K(N).

The Parisi scheme at the Kth level of RSB parametrizes the bond average of PJ (q), P (q),
by a series of delta functions at various values of q, namely q1, q2, . . . , qK :

P(q) =
K∑

i=1

aiδ(q − qi). (3)

The weights of the delta functions ai and their positions qi are the variational parameters that
one optimizes to obtain the Parisi solution. In the thermodynamic limit, where N goes to
infinity, a Parisi RSB solution with K > 1 is only stable if K is taken to infinity. We argue
that in finite-size systems the self-energy corrections to the Parisi solution can stabilize an
RSB solution with a finite value of K, and we will argue that R = 2K ∼ Nµ. (In zero field
PJ (q) = PJ (−q) so the number of peaks/features R = 2K . However, if q1 just happens to
be zero, i.e. there is a peak at the origin, then R = 2(K − 1) + 1 = 2K − 1.)

Consider the single-valley replicon correlation function GR(i, j) = 〈SiSj 〉2
c . At

wavevector k its Fourier transform takes the form described in [4], and at Gaussian order,
GR(k) = 1/k2, both for T < Tc and T = Tc. (Strictly speaking in the SK model the only
possible value which k can take is zero, but we will find it useful to consider non-zero values of
k.) Right at k = 0,GR(0) is infinite in the thermodynamic limit. For finite N, the self-energy
corrections neglected at Gaussian order will be shown in appendix A to produce a divergence
growing as N1/3. Schematically

GR(k) = 1

k2 + �R

, (4)

so that the self-energy �R is of order 1/N1/3.
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Figure 1. Scaling plot of E(R) (the average number of peaks/features determined by visual
inspection of the individual PJ (q)) as a function of N, for T = 0.4. The curve is the best fit to the
form E(R) = a + bNc with c = 0.17 ± 0.14.

Now for finite values of K in the Parisi RSB scheme, the Gaussian propagator is unstable
and behaves as [6]

GR(k) = 1

k2 − 4
3

t2

(2K+1)2

, (5)

in the regime near the transition temperature Tc where t ≡ 1 − T/Tc is small. The instability
at k = 0 only disappears when one takes the infinite K limit. Our basic idea is that for finite
N this instability can be removed by the stabilizing effect of the self-energy �R . Then if
�R = c/N1/3 stability will be achieved when

4

3

t2

(2K + 1)2
∼ c/N1/3. (6)

In other words, when K = K(N) ∼ tN1/6, there will be no need to break the symmetry
further (at least to achieve stability). This would explain why the number of peaks/features in
PJ (q) increases as N1/6 (see figure 1).

Our procedure to determine the finite-size corrections to scaling of any thermodynamic
quantity proceeds in a similar fashion. First one obtains from RSB calculations the Kth
approximation for the quantity. Thus the free energy per spin below but near Tc is to order t5,
and at large values of K [6]

�f =
(

1

6
t3 +

7

24
t4 +

29

120
t5

)
− 1

360
t5

(
1

K

)4

. (7)

The same kind of dependence ∼K−4 of the excess term has been found at T = 0 by Oppermann
et al [7]. To estimate the N-dependence of the finite-size corrections we replace K by tN1/6.
This gives a term in �f which scales as t/N2/3, which is in excellent agreement with numerical
studies [8]. Just as the self-energy corrections to equation (5) change the sign of GR(0), we
would expect that the higher loop corrections to the free energy will also change the sign of
this correction, but not its N-dependence.
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A similar argument can be given for other quantities. The additional terms in the internal
energy per spin below Tc at order K in the RSB procedure are [6]

�u =
(

1

2
t2 +

5

6
t3 +

1

3
t4

)
− 1

72
t4

(
1

K

)4

. (8)

Substituting as before tN1/6 for K, the finite-size corrections to the internal energy would be
expected to be of order 1/N2/3.

The Edwards–Anderson order parameter [6] is to order K

qEA = t + t2 − 2

3(2K + 1)2
t2, (9)

correct to order t2. It is thus to be expected on substituting for K that the finite-size corrections
to qEA are of order 1/N1/3. If one defines qEA for finite-size systems as the value of q at which
the Parisi overlap function P(q) peaks, then such an N-dependence is in excellent agreement
with both existing numerical and theoretical arguments [9]. We postpone to section 9 the
comparison with the results of our numerical analysis of the scaling behaviour of qEA.

Our approach can be extended to determine the N-dependence of sample-to-sample
fluctuations of, say, the internal energy or the free energy. In [10] it was shown that the
variance of the sample-to-sample fluctuations of the extensive free energy δF varies as a
quantity −J (0), which at Gaussian order has the property −J (k) ≈ k−2. At finite RSB of
order K, an exact expression for this quantity was given in [11]. As shown in appendix B, it
can be evaluated when k2 (which is originally a wave vector) is replaced by the self-energy.
One gets that

−J ≈ N1/3f (t), (10)

where f (t) is some known function (see appendix B). This shows that the variance of δF is
of order N1/3, with typical fluctuations being of order N1/6.

From this result one can compute the sample-to-sample fluctuations of R. To do this we
shall suppose that the sample-to-sample fluctuation of K is of order δK . Then equation (7)
implies that the sample-to-sample fluctuation of the extensive free energy δF behaves as

δF ∼ Nt5

(
1

K

)5

δK. (11)

Given that δF ≈ N1/6, it follows that δK is of O(1), that is independent of N.
We have determined the sample-to-sample fluctuations of the internal energy in the course

of our simulations, and their N-dependence can be predicted by extension of these arguments.
From equation (8), the sample-to-sample variation of the full internal energy δU is

δU ≈ Nt4

(
1

K

)5

δK. (12)

Substituting for K and δK , it follows that δU ≈ t−1N1/6. These sample-to-sample fluctuations
appear to diverge at T = Tc, but equation (8) only holds in the RSB region, which is outside
the critical regime (which is defined by the limits N → ∞, t → 0, with Nt3 fixed [12]).

All these arguments are intuitive rather than rigorous. As a consequence, we have
attempted to check them by numerical simulations of the finite-size SK model.

3. The Monte Carlo simulation

We have based our analysis on a large set of numerical data produced by the large scale parallel
tempering simulation of [13, 14], supplemented by a new large scale simulation for lattices
with N = 2048 spins.

5
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Table 1. The relevant parameters of our numerical runs: number of sites N, number of parallel
tempering sweeps used for measurements Nmeas, number of parallel tempering sweeps used for
thermalization Nequi and number of disorder samples NJ .

N Nmeas(K) Nequi(K) NJ

64 1000 400 1024
128 1000 400 8192
256 1000 400 1024
512 200 200 1024

1024 1000 400 1024
2048 200 200 512
4096 500 400 256

The quenched random couplings of our system can take the two values ±1 with equal
probability; the use of such binary couplings allows us to write computer codes that run
much faster than, say, when using quenched random couplings assigned under a Gaussian
distribution. We assume that the interesting leading scaling behaviour is the same, for example,
when using binary or Gaussian couplings.

We report in table 1 the relevant parameters of our numerical simulations. The
temperatures allowed to the parallel tempering steps are in the range T ∈ [0.4, 1.3].

A parallel tempering sweep consists of one Metropolis sweep (all spins are updated in
lexicographic order) followed by a temperature exchange sweep (we try to exchange adjacent
values of T in sequential order). The balance between the number of sweeps performed for
each disorder sample and the number of disorder samples included has been chosen cautiously
in order to avoid any possible bias due to a non-perfect thermalization; we have chosen a
safe compromise favouring, at fixed amount of computer time, the number of sweeps over the
number of disorder samples. We have checked the quality of thermalization by monitoring for
example the value of q2 as a function of the Monte Carlo time, starting from an ordered initial
spin configurations (all spins equal to one). For all values of T and N the disorder averaged
data do not drift appreciably already after a couple of thousand sweeps, i.e. far before we start
taking measurements. A second important test is provided by the symmetry of the individual
PJ (q)’s that is very good for most samples (see section 4). In practice, we found that at
temperatures T < 0.4 it was difficult to equilibrate our larger samples. However, we also wish
to disentangle our finite-size effects from critical fluctuations so most of our analysis were
carried out at T = 0.4, i.e. well below the critical temperature Tc = 1.

In the rest of this paper we will denote by E(· · ·) the average over the quenched
disorder, U = Ne the total internal energy and δU = N� its standard deviation, with
N2�2 ≡ E(U 2) − E(U)2 = N2(E(e2) − E(e)2).

4. The structure of PJ (q)

As mentioned before, the function PJ (q) is very different for different realizations of the
bonds. Figure 2 shows eight such distributions for the lowest temperature value (T = 0.4) of
the largest system (N = 4096) we have simulated. The symmetry of the plots under inversion
of the overlap is excellent: one can see that even very small peaks appear with their reflected
counterpart, and this is a remarkable check of good thermalization. The only mild asymmetries
one can see concern the peaks heights, connected to the population of the different ‘pure states
to be’, that is a very difficult quantity to estimate by Monte Carlo integration (just think about
the two peaks in the magnetization distribution for the usual Ising model in three dimension

6
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Figure 2. PJ (q) for eight different disorder realizations: here N = 4096 and T = 0.4000. Those
are the first eight disorder configurations generated by our computer program. The symmetry of
the plots around q = 0 is a good test of thermalization. The number of peaks R quoted above each
figure is the value computed by our computer program.
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Figure 3. Scaling plot of E(R) determined by automatic peak counting, as a function of N, for
T = 0.4. The curve is the fit to the form E(R) = a + bNc with c = 0.28 ± 0.04.

below the Curie temperature). Each of PJ exhibits a given number RJ of features (well-formed
peaks, humps, shoulders on the side of a peak and so on) that we are interested to determine
in order to compute its disorder expectation value E(R) and the scaling behaviour of E(R)

with N.
Peaks/feature counting is not at all a trivial issue when dealing with noisy data. The first

assumption must be that the statistical accuracy of the data set is good enough not to hide
important features (in this respect it is possible that further improvements to the Monte Carlo
scheme could help: one could check for example if using multi-overlap algorithms [15, 16]
could be of help). Under this assumption we have developed a computer code that counts the
number of peaks. The first step is based on smoothing up the (symmetrized) data for PJ (q).
The second step determines the peaks of the smoothed data: the peaks are defined as local
maxima of PJ (q) where a valley at least lower than a percentage p of the peak height follows
the peak on both sides (we have selected p = 90% and we have relaxed the depth condition
for valleys that include one of the two frontiers of the support, i.e. q = ±1). As a third and
last step we impose a cutoff on the putative peak heights: we discard any peak of height lower
than 1% of the highest peak present in PJ (q) for the given disorder sample. In what follows,
we will call ‘automatic peak counting’ this procedure to determine features.

We did not push the coding to include in our automatic peak counting the more complex
structures which visual inspection spots: an automatic approach to such a complex task needs
great care to avoid arbitrary choices that could lead to misleading conclusions.

For example, it looks clear that the first plot of figure 2 (the upper-left figure) is
characterized by four features, two for q > 0 and the two symmetric ones for q < 0.
The first feature is the clear peak that the computer code also finds, while the second very
clear feature is the shoulder on the peak: this shoulder is naturally interpreted as a second
unresolved peak, too wide to be an isolated feature, but whose presence is very clear to the
observer. In other words, it is clear that a correct analysis of this feature would lead to R = 4
and that the conclusion R = 2 reached by our computer code is not careful enough. To be
on the safe side, we have carried out the tedious task of looking at the first 192PJ (q)’s for
T = 0.4 and estimating by eye the number of features R for every graph. This procedure will
be called ‘visual inspection’ in what follows.

We show the behaviour of E(R) as a function of N for T = 0.4 in figure 1 for the visual
inspection and in figure 3 for the automatic peak counting. The statistical errors are estimated

8
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Figure 4. Scaling plot of δR determined by visual inspection, as a function of N, for T = 0.4.
The curve drawn is a fit to the form δR = a + bNc . The best fit is obtained for c = 0.07 ± 0.13.

from the fluctuations between the disorder samples. Our visual inspection gives on average
between one and two extra features that are not found by the automatic computer counting.
This only means that there are in average between one and two extra features that are not
simple peaks. The best fits to the form E(R) = a + bNc for the two cases give the exponents
cvisual = 0.17 ± 0.14 for the visual inspection and cautomatic = 0.28 ± 0.04 for the automatic
count. The difference between the estimated error bars mainly reflects the number of disorder
samples considered in the two cases. Our prediction is c = 1/6 ≈ 0.17. Our result for cvisual is
on the top of it but it has a huge statistical error, while our result for cautomatic is not consistent
with 1/6 at more than two standard deviations (but is of uncertain relevance). It is important
to note that here we are dealing with a quantity that grows very slowly and is very small even
for our largest systems, and that pre-asymptotic effects could be large.

In figure 4 we show

δR ≡ [E(R2) − E(R)2]1/2, (13)

i.e. the fluctuations of R (as determined by visual inspection), together with the best fit to the
form δR = a + bNc. The best fit is obtained for c = 0.07 ± 0.13: our theoretical estimate
in section 2 of the value of the exponent c was zero; our numerical work is consistent with
this estimate, although greater precision is really needed before the result can be regarded as
definitive.

In conclusion, we cannot claim to have good numerical evidences for R ∼ N1/6 and
δR ∼ N0, but our data are consistent with this predictions.

In figure 5 we give the empirical distribution of the number of features R obtained by
visual inspection for N = 4096 and T = 0.4: the distribution is very wide. It is also clear
from the figure that even values of R are more common than odd values: this is expected, since
odd values are only obtained in cases where PJ (q) has a peak in q = 0.

5. Finite-size shift in the energy

In figure 6, we show the internal energy per spin as a function of N−2/3 for our lowest
temperature T = 0.4 (that we believe is low enough to be free of effects from the critical
point). The statistical errors are again estimated from the fluctuations between the disorder
samples.

9
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Figure 5. Distribution of the number of features R obtained by visual inspection for N = 4096
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Figure 6. The internal energy as a function of N−2/3 for T = 0.4. The line is a linear fit (using
data for N � 256) as a function of N−2/3 to the data.

In the same figure we show a fit to the form eN = e∞ + AN−2/3, using the value
e∞ = −0.735 110 726 from [17]. The best fit is obtained for A = 0.77 ± 0.01, with a
χ2 of 12 for 4 degrees of freedom. The presence of slow decaying sub-leading corrections
(the dominant sub-leading contribution behaves like 1/N , barely faster than N−2/3) explains
presumably why χ2 is larger than the number of degrees of freedom. The importance of
the corrections to the leading behaviour (together with some statistical oddness) is shown in
figure 7, where we plot N2/3(eN − e∞) as a function of 1/N1/3: this is a way to focus
on the deviations from the leading behaviour. We do believe that the three leftmost odd
looking data points in figure 7 are due to a statistical fluctuation. The curve is a fit to
N2/3(eN − e∞) ∝ 1/N1/3, which is the form we would expect from a 1/N correction to the
internal energy per spin. Based on figures 6 and 7 we conclude that our numerical data are
consistent with an exponent 2/3 at T = 0.4. Other temperatures were studied in [19] (see
figure 11 of that paper) and it is our conclusion that the numerical data are consistent with 2/3
in the whole spin glass phase, although the work of [19] indicates that at some temperatures
finite-size corrections are substantial. We disagree with the conclusions of [18] that are based
on data with 36 � N � 196, namely a region that is discarded altogether in our fits (see [19]
for a detailed comparison). On the other hand, our results agree perfectly with the data shown
in [20, 26–29] for the SK model and in [21] for the Bethe lattice, both obtained at T = 0.
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points are included) to the data, of the form A + BN−1/3.

6. The Edwards–Anderson order parameter qEA

We have studied the finite-size behaviour of the Edwards–Anderson order parameter qEA,
improving the analysis of [9]. We define qEA on a finite system as the location of the
maximum of the disorder averaged P(q) = E(PJ (q)). The exact procedure is the following:
we first symmetrize our data for P(q), then we determine the maximum value reached by the
function (we call it Pmax) and finally we compute qEA by means of a quadratic fit of the data
in the range of positive q values such that P(q) > 0.95Pmax, using the same weights for all
data points. This gives us an estimate of qEA(N) that is not forced to take discrete values:
statistical errors are obtained through a jackknife analysis (obviously a jackknife approach
would not make sense if qEA was constrained to take discrete values).

We have compared the values we have obtained for qEA to values obtained with shorter
numerical simulations, and there is an excellent agreement: this strongly suggests that the
procedure we have used to determine qEA(N) has no appreciable statistical bias. We show in
figure 8 our data for qEA(N) as a function of N−1/3 for T = 0.4, together with our best fit
(using data with N � 256) that uses the infinite volume result qEA = 0.759 from [17]. The
value of χ2 is 10 for 4 degrees of freedom. The small N data exhibit larger corrections from
the asymptotic behaviour than those for the internal energy. This is not unexpected since the
definition of qEA on a finite system is involved: for example the intrinsic resolution of the
determination of qEA in a finite system is 2/N (that is close to 0.03 for N = 64), a value that
is exactly on the scale of the deviations that we observe.

7. The sample-to-sample fluctuations of the internal energy

We have also analysed the fluctuations of the internal energy between different bond
realizations using as a measure

δU 2 = N2
(
E

(〈e〉2
J

) − E(〈e〉J )2
)
. (14)

The issue of the scaling behaviour of the free energy fluctuations in the SK model has been
investigated intensively over the years. Let us define an exponent ϒ by the equation

11
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Figure 8. The Edwards–Anderson order parameter qEA(N), as defined in the text; here T = 0.4.
The line is for the best fit to the data as a linear function of N−1/3 (for N � 256).

δF 2 = N2(E(〈f 〉2
J

) − E(〈f 〉J )2) ∼ N2ϒ. (15)

Our theoretical approach suggests that ϒ should be µ = 1/6. The first investigation we
know is the numerical work of [22] at T = 0 which gave (on very small samples) the result
ϒ = 0.222 , compatible with ϒ = 1/4. The later theoretical analysis of [23] gives ϒ = 1/6.
However, there is a caveat to this conclusion. What is effectively calculated is the tail of the
probability distribution of the free energy on the low-free energy side [24]; and in order to
get ϒ one has to assume that the N-dependence of the fluctuations in the tail equals that of
the standard deviation of the free energy. Ultimately these analyses relate the value of ϒ to
the order of the first nonlinear term in the expansion of the replicated free energy in powers
of n (the number of replicae), which is the n6 term [4]. More recently, several authors, using
exact or heuristic ground states determination algorithms, have found zero temperature values
compatible [20, 25–29] with ϒ = 1/4, some excluding [25, 26, 20, 28] the ϒ = 1/6 value,
some not [27, 29]. Analytical arguments in support of the ϒ = 1/4 value can be found in
[27, 30]. Finally, a recent analytical work [31] using an innovative method obtains the exact
bound ϒ � 1

4 in the low T phase. Clearly, the situation is far from being settled. It should
be clear that in the numerical approach it is extremely hard to distinguish with confidence
exponents as close as 1/4 and 1/6 when the range of variations of N is small (typically one
decade), the more so as the functional form of the next correction is unknown. A further
difficulty is that exact algorithms are limited to very small systems and heuristic algorithms
are heuristic.

The above results are for the free energy. The problem for the internal energy at finite
temperature has never, to our knowledge, been studied numerically; we will consider here
finite, low-temperature values, and this will allow us to analyse both the low T phase and the
T → 0 limit.

Let ẽJ be the energy measured at some temperature T during the numerical simulation
of a system with a given realization of the disorder J (this is what we call a sample of our
system). ẽJ comes from the average of Nmeas values, and we can use the quantity

[
1

NJ

∑
J

ẽ2
J −

(
1/NJ

∑
J

ẽJ

)2]
, (16)
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Figure 9. The energy fluctuation δU2/N = N�2(T ) as a function of T, for different values of N.

where NJ is the number of samples, to estimate

�2(T ) = E(〈e2〉J ) − E(〈e〉J )2. (17)

At leading order �2(T ) and δU 2 are related through

�2(T ) = δU 2

N2
+

2τ
(E)
int T 2CN(T )

NmeasN
, (18)

where τ
(E)
int is the integrated autocorrelation time for the energy at temperature T ,CN(T ) is

the specific heat and Nmeas is the number of parallel tempering sweeps performed during the
measurement phase of the simulation (we measure the energy after every Metropolis sweep
of the system).

It turns out that in our numerical data the second term in equation (18) is negligible, as
we have checked by comparing the estimates of �2(T ) in different numerical simulations for
the same set of disorder couplings (with N = 64 256 and 1024) using the first 200 K parallel
tempering (PT) sweeps and the second 1000 K PT sweeps after thermalization. To the best
of our knowledge, the autocorrelation time τ

(E)
int of the parallel tempering algorithm has never

been measured for the SK model, and our results show that it is very small. Our results for
�2(T ) as a function of T can be found in figure 9.

Figure 10 shows the scaling behaviour of δU for our lowest temperature. The leading
exponent is compatible with the value 1/6 but our statistical (and systematic) accuracy is not
good enough to allow us to rule out the value 1/4: the main culprits are the data points for
large systems (mostly N = 4096 and N = 2048), and we would need a much larger number
of samples to have a precise determination of this exponent from figure 10 only.

In the critical region δF ∼ f (tN1/3), where δF are the sample-to-sample fluctuations of
the total free energy [23] and t = 1−T/Tc. The sample-to-sample internal energy fluctuations
are related to the t derivative of δF and they scale as N1/3f (tN1/3), where f (x) goes like
1/x at large negative x, see figure 11, and is a constant at x = 0, i.e. T = Tc. The scaling is
excellent in the paramagnetic phase (on the left) and in the spin glass phase where tN1/3 is
small, namely before the ∞-RSB effects start to be important, leading to a different behaviour.
Figure 11 clearly shows the two scaling regimes. The ∞-RSB effects are only present for
T < Tc, in the regime where Nt6 is large [34] so multiple pure states can exist. In the
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Figure 11. Scaling plot of δU/N1/3 as a function of tN1/3.

finite-size critical regime one has Nt3 fixed with t going to zero. This makes Nt6 go to zero,
so that in the critical regime RSB effects are absent.

In figure 12, we visualize the scaling behaviour of δU in a different way; we show an
effective exponent 1 − ζ obtained from a fit of x = δU/(E(e)) to the form ∝ N1−ζ as a
function of T. This plot is consistent with the guess that the exponent at T = 0 takes a value
of 1/6: in order to get a value of 1/4 we should have a very complex T-dependence of the
effective exponent. The situation at T < Tc and exactly at T = Tc is more complicated: it
is possible to see that finite-size effects bring down the value of the exponent with increasing
lattice size, and a scenario where the true exponent is 1/6 for all T < Tc (but with large
finite-size corrections) is plausible and consistent with the data.

8. The number of pure states

It is useful to consider how the peaks in PJ (q) arise. Suppose we have just two states, state
a and its spin reverse A. Then using the definition of PJ (q) in equation (1), if copy 1 is in a
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and copy 2 is also in a there will be a peak at +qEA. If both copies are in A, there will also be
a peak at +qEA. However, if copy 1 is in state a and copy 2 is in state A, that will produce a
peak at −qEA: the same will be true when copy 1 is in state A and copy 2 is in state a.

Suppose now we have four states a,A, b, B. Because (in the infinite volume limit) qEA

is the same for all states the overlaps aa,AA, bb, BB are all qEA, and aA, bB,Aa,Bb are all
−qEA. The overlaps ab = q12 = AB, and aB = −q12 = Ab, giving four peaks in total. (If
q12 = 0 we have three peaks only.) However, the peak at ±q12 will not in general have the
same weight as that at qEA.

Then, from the above, two states give two peaks and four states give four peaks (if all
involved overlaps are large than zero).

With three states 1, 2 and 3 the effects of the ultrametric organization of states start to
play a role. Besides the peak at qEA, there could be overlaps q12, q23 and q13 making at most
four peaks (if all the overlaps are non-zero). But ultrametricity says that either all three q’s
are equal or two are equal, making at most three peaks (six peaks when one includes the
time-reversed states).

With four states 1, 2, 3 and 4, besides the peak at qEA, there are the overlaps
q12, q13, q14, q23, q24, q34, but here ultrametricity limits one to three distinct possibilities,
making four peaks in total (and eight when one includes the time-reversed states).

There is clearly a pattern here; if states are organized ultrametrically their number is equal
to the number of peaks of PJ (q) (plus one if there is a peak at q = 0). We are thus predicting
that the number of pure states grows with N as ∼ N1/6. These pure states are those whose total
free energy is of order kBT from that of the lowest free energy state. It is only the overlaps of
these low-lying states which can produce detectable features in PJ (q).

Another way of determining the number of pure states at level K is to observe that if one
starts from the bottom (the leaves) of a genealogical tree, and moves towards the ancestors,
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points that are going up can only meet at the bifurcations of the tree. Hence, the number of
overlaps is equal to the number of levels K in the tree.

9. Application to a finite number of dimensions

The exponent ϒ which determines the sample-to-sample fluctuations δF of the free energy of
the SK model has a significance beyond this model as it appears in the theory of the interface
free energy of finite-dimensional spin glasses.

In [30] it was shown by going to one-loop order about the Parisi RSB mean-field solution
that the variance of the interface free energy associated with the change in the free energy on
going from periodic to antiperiodic boundary conditions, δFP,AP = FP − FAP, is of the form

δF 2
P,AP = L2f (L/M) + δF 2. (19)

Here the system is of length L in the z-direction, and it is periodic and of length M in the
transverse d − 1 dimensions. The change from periodic to anti-periodic boundary conditions
is done by flipping the sign of the bonds in a hyperplane perpendicular to the z-axis. It follows
that δFP,AP = 0. δF 2 is the bond-averaged variance of the free energy of the SK model
containing N = LMd−1 spins. Equation (19) is valid at least to one-loop order, and its form
is probably unchanged whenever the loop expansion is possible; the loop expansion is well
defined in the low-temperature spin glass state when d > 6, but its existence is problematic
for d < 6 (see [4]).

The first term in equation (19) is of the standard aspect-ratio scaling form [35, 36], where
the zero-temperature scaling exponent θ is equal to 1. When L is of order M, δF 2 is of order
N2ϒ , i.e. of order ∼Ld/3 if ϒ = 1/6. This term is not of the standard aspect-ratio scaling form;
it depends instead on the total number of spins in the system. This reflects the fact that in RSB
situations domain walls have a fractal dimension ds equal to d, i.e. they are space filling. For
example in dimension d = 2, where we know that we do not have a broken symmetry phase,
domain walls are fractal with ds < d. The variance of the interface free energy is dominated
by the SK-like term for all d > 6 provided that ϒ = 1/6. If ϒ = 1/6, one would expect
that numerical studies of the defect energy in six dimensions would suggest a value of θ close
to unity; exactly in d = 6 Boettcher [32] found that θ ≈ 1.1 ± 0.1. In d = 7, it is reported
in [33] that θ ≈ 1.244 ± 0.05, also compatible with d/6. It is possible that when d < 6
the standard aspect-ratio scaling form will dominate. (Of course, when d < 6, the one-loop
expression for the interface free energy will no longer be adequate.) Thus, the dominant term
in the L-dependence of the interface free energy could have very different forms above and
below six dimensions; note that d = 6 plays a special role only if the exponent ϒ is exactly
1/6.

For d < 6 the loop expansion about the Parisi RSB state becomes problematical but it is
clearly possible that the essential features of RSB might survive even in d < 6 and that the
appropriate analytic approach could allow us to make that clear. Another possibility is that
for d < 6 the droplet picture of spin glasses [37, 38] would apply instead, as advocated in
[5], so that the nature of the spin glass state would change from being RSB like for d > 6 to
being replica symmetric for d < 6. According to this picture PJ (q) should become just two
delta functions at ±qEA in the thermodynamic limit, corresponding to just a state and its time
reverse. (In fact, for finite systems in three dimensions, PJ (q) appears strikingly similar to that
of the finite N SK model [39]. Unfortunately, no systematic study has been made as to how
the number of peaks, humps and shoulders evolves with system size; such an investigation
could be very informative as regards the true nature of the three-dimensional spin glass state.)
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We have argued here that for the finite N SK model the replica-symmetry breaking is
stabilized at a finite value of K by self-energy effects. The replica symmetric state of the
droplet picture corresponds to having K = 1. Thus were the droplet picture to be the valid
description of spin glasses below six dimensions (and some of the authors of this paper would
argue that this is unlikely!), the same mechanism could stabilize the replica symmetric state.
While perturbatively there seems to be no way that the replica symmetric state could be stable,
it is possible that if the full self-energy corrections about that state could be included into the
calculation, then replica symmetry might be maintained [5].
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Appendix A. The N-dependence of the self-energy

In this appendix we shall estimate the N-dependence of the self-energy �R . This is needed for
our argument that the number of features R scale as N1/6. A direct calculation of �R would be
impractical: it would involve summing diagrams to all orders. Because of that we will obtain
the N-dependence of �R indirectly via a study of the TAP equations [40] of the model.

The TAP equations provide a non-replica way of finding single-valley correlations. For
the magnetization mi at site i within a single state they give

mi = tanh

⎛
⎝β

∑
j

Jijmj − βmi

∑
j

J 2
ij

(
1 − m2

j

)
+ βhi

⎞
⎠ . (A.1)

The spin glass susceptibility is defined as

χSG ≡ 1

N

∑
i,j

(
∂mi

∂βhj

)2

. (A.2)

When the right-hand side is bond-averaged over the exchange interactions Jij we obtain GR(0).
In the following we will only consider the case of zero magnetic field, hi = 0.

It is convenient to express χSG in terms of the eigenvalues of the Hessian matrix of the
second derivatives of the TAP free energy [41]:

Aij ≡ ∂2(βFTAP)/∂mi∂mj = −2β2J 2
ijmimj − βJij

+

(
β2

∑
k

J 2
ik

((
1 − m2

k

)
+

(
1 − m2

i

)−1

)
δij . (A.3)

In terms of the eigenvalues λ of A,

χSG = 1

N

∑
λ

1

λ2
, (A.4)

which in terms of the density of states ρ(λ) becomes

χSG = lim
N→∞

∫ ∞

λmin

dλρ(λ)/λ2. (A.5)
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faster than the predicted N1/3. This is due to finite-size effects, see the text.

The first term on the right-hand side of equation (A.3) is of order 1/N and is smaller than
the other terms which are either of order 1/N1/2 or, on the diagonal, of order 1. It will be
dropped. (We are focusing in this work on the low-lying TAP states—the pure states—where
the mechanism for splitting off an isolated eigenvalue as in [42] cannot operate.) A stable
solution of the TAP equations which corresponds to a minimum requires all the eigenvalues
of the matrix A to be positive. For pure states, ρ(λ) is non-zero right to the origin; at small λ

(see [41]) one has that

ρ(λ) = 1

π

(
T

Tc

)3
[

1

N

∑
i

(
1 − m2

i

)3

]−1/2

λ
1
2 . (A.6)

With this form for ρ(λ), the integral in equation (A.5) would be divergent without its lower
cutoff at λmin. The N-dependence of λmin itself can be estimated by setting

1 = N

∫ λmin

0
dλρ(λ), (A.7)

which means that λmin ∼ N−2/3. Using this result, we can estimate the N-dependence of χSG

as N1/3 using equation (A.5). Note that this result would also apply at Tc.
In fact there is a very simple direct argument for the behaviour at Tc. According to [5, 12]

for T > Tc,

χSG = 1

|t |f (N |t |3), (A.8)

so that as |t | goes to zero, that is, at Tc, χSG ∼ N1/3.
We would not expect that bond-averaging χSG to get GR(0) will modify this N-dependence

since single-valley quantities are expected to be self-averaging.
Thus for T � Tc, the single-valley spin glass susceptibility GR(0) diverges as N1/3. This

implies that the typical value of K, the order of replica-symmetry breaking in a finite system
of N spins, will be via equation (6) of order tN1/6. The data in figure 1 are clearly consistent
with this expectation.

We have numerically tested the prediction χSG ∼ N1/3 using the iteration procedure
described in [43]. This method allows us to find many TAP states even for large system sizes
(see [43] for a discussion of the proximity of the iteration algorithm to a dynamical critical
point and the influence of this on the free energy of the states found—here we chose the
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proximity for each system size in such a way that we get the same free energy range for all
system sizes). Using systems with N = 100, 200, 283, 400, 566 and 800 at a temperature of
T = 1.0/β = 0.2, we have calculated the Hessian for every state found. The diagonalization
of the Hessians was done using arbitrary precision arithmetic (with an accuracy of 50 decimal
digits) since these matrices are extremely ill-conditioned and so they are hard to diagonalize:
standard packages, for instance the LAPACK routines, fail at the task. The eigenvalues were
used to calculate χSG as in equation (A.4). The results are shown in figure A1.

Surprisingly, χSG appears to grow faster than N1/3. We believe, however, that this is a
finite-size effect. To back up this claim, we show in figure A2 a scaling plot of the averaged
integrated eigenvalue density D(λ) of the Hessians of sizes N = 200, 400 and 566.

The expectation is that in the thermodynamic limit this function goes as D(λ) = D∞(λ) ∼
λ3/2 for small λ (corresponding to ρ(λ) ∼ λ1/2). For finite N there is a cutoff around λ ≈ N−2/3.
The natural expectation is that this cutoff is of the form D(λ) = D∞(λ)f (Nλ3/2) with a scaling
function f (x). This is verified in figure A2. The arguments sketched above which lead to the
prediction χSG ∼ N1/3 for large N can only be expected to be valid when the interval in which
D(λ) ≈ λ3/2 prevails is large enough. This interval can be identified as the horizontal (or
nearly horizontal) stretch in figure A2. Clearly, this interval is very small as it is not even one
decade for the available system sizes. The conclusion is, therefore, that we cannot yet expect
to see the asymptotic scaling behaviour. It is not possible to go to larger system sizes as the
arbitrary precision diagonalization of the Hessians becomes computationally too expensive.

Appendix B. Free energy fluctuations and J (p)

According to [11], the exact expression for the quantity J (p) for a finite number of replica-
symmetry breaking steps K and for the truncated model with Hamiltonian

H = − t

2

∑
α,β

q2
αβ − w

6

∑
α,β,γ

qαβqβγ qγα − y

12

∑
α,β

q4
αβ (B.1)

is

J (p) = −
K+1∑
k,l=1

µ0(k)µ0(l) log(p2 + λ(0; k, l)), (B.2)
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where

µr(k) =

⎧⎪⎪⎨
⎪⎪⎩

1

pk

− 1

pk−1
k > r − 1

1

pr+1
k = r + 1

, (B.3)

pk = 2y

w
qK

k − 1
2

K
, (B.4)

λ(r; k, l) = 2y
q2

K

K2

(
1

2
(k − 1)2 +

1

2
(l − 1)2 − r2 − 1

6

)
, (B.5)

and qK is the solution of

t − wqK + y

(
1 − 1

6K2

)
q2

K = 0. (B.6)

When the expressions for µr(k) and µr(l) are inserted, equation (B.2) can be rewritten as

J (p) = −2
K∑

k=1

1

pk

log
p2 + λ(0; k,K + 1)

p2 + λ(0; k + 1,K + 1)
− log(p2 + λ(0;K + 1,K + 1))

−
K∑

k,l=1

1

pkpl

log

(
p2 + λ(0; k, l)

p2 + λ(0; k + 1, l)

p2 + λ(0; k + 1, l + 1)

p2 + λ(0; k, l + 1)

)
. (B.7)

We are interested in the behaviour for small p where J (p) diverges as p approaches yq2
K

3K2 . It
is easy to see that the first two terms of the former expression are well behaved in this limit.
The divergence in p must therefore come from the last term, which will be denoted by Ĵ (p).
Defining

x2 = K2p2

yq2
K

− 1

3
(B.8)

and renumbering the sums to start from 0 it can be cast in the form

Ĵ (p) = −w2
(
x2 + 1

3

)
4yp2

K−1∑
k,l=0

1(
k + 1

2

) (
l + 1

2

)
× log

(
x2 + k2 + l2

x2 + (k + 1)2 + l2

x2 + (k + 1)2 + (l + 1)2

x2 + k2 + (l + 1)2

)
. (B.9)

While p was a finite-dimensional wave vector in [11], here we consider it as a proxy for
the self-energy as we are dealing with the SK model. Substituting �R = cN−1/3 for p2 and
making the usual replacement K = c′tN1/6 (where the constant c′ is large enough to guarantee
stability) yields (to leading order in N) x2 = c′2ct2

yq2∞
− 1

3 and Ĵ = δF 2 = N1/3f (t). The function
f (t) is defined by the remaining prefactors and the sums (with upper bounds set to infinity) in
equation (B.9). This shows that the typical sample-to-sample fluctuations of the free energy
are of order N1/6.
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